激光產(chǎn)生的原理和產(chǎn)生的過程
?
激光(受激輻射光)英文名Laser,即LightAmplificationbytheStimulatedEmissionofRadiation的縮寫。中文意思是受激輻射光放大,這已說明了激光的產(chǎn)生過程。我們就從物質(zhì)的結(jié)構、光的輻射和吸收來了解這一過程。
激光產(chǎn)生原理
要了解激光,我們首先應先了解一下這樣幾個概念。
能級
物質(zhì)是由原子組成,而原子又是由原子核及電子構成。電子圍繞著原子核運動。而電子在原子中的能量不是任意的。描述微觀世界的量子力學告訴我們,這些電子會處于一些固定的“能級”,不同的能級對應于不同的電子能量,離原子核越遠的軌道能量越高。此外,不同軌道可最多容納的電子數(shù)目也不同,例如最低的軌道(也是最近原子核的軌道)最多只可容納2個電子,較高的軌道上則可容納8個電子等等。
躍遷
電子可以通過吸收或釋放能量從一個能級躍遷到另一個能級。例如當電子吸收了一個光子時,它便可能從一個較低的能級躍遷至一個較高的能級。同樣地,一個位于高能級的電子也會通過發(fā)射一個光子而躍遷至較低的能級。在這些過程中,電子釋放或吸收的光子能量總是與這兩能級的能量差相等。由于光子能量決定了光的波長,因此,吸收或釋放的光具有固定的顏色。
基態(tài)和激發(fā)態(tài)
當原子內(nèi)所有電子處于可能的最低能級時,整個原子的能量最低,我們稱原子處于基態(tài)。當一個或多個原子電子處于較高的能級時,我們稱原子處于激發(fā)態(tài)。
受激吸收
受激吸收就是處于低能態(tài)的原子吸收外界輻射而躍遷到高能態(tài)。
電子可通過吸收光子從低能級躍遷到高能級。
普通常見光源的發(fā)光(如電燈、火焰、太陽等的發(fā)光)都是由于物質(zhì)在受到外來能量(如光能、電能、熱能等)作用時,原子中的電子吸收外來能量而從低能級躍遷到高能級,即原子被激發(fā)。激發(fā)的過程是一個“受激吸收”過程。
受激輻射
受激輻射是指處于高能級的電子在光子的“刺激”或者“感應”下,躍遷到低能級,并輻射出一個和入射光子同樣頻率的光子。受激輻射的最大特點是由受激輻射產(chǎn)生的光子與引起受激輻射的原來的光子具有完全相同的狀態(tài)。它們具有相同的頻率,相同的方向,完全無法區(qū)分出兩者的差異。這樣,通過一次受激輻射,一個光子變?yōu)閮蓚€相同的光子。這意味著光被加強了,或者說光被放大了。這正是產(chǎn)生激光的基本過程。
光子射入物質(zhì)誘發(fā)電子從高能級躍遷到低能級,并釋放光子。入射光子與釋放的光子有相同的波長和相位,此波長對應于兩個能級的能量差。一個光子誘發(fā)一個原子發(fā)射一個光子,最后就變成兩個相同的光子。
自發(fā)輻射
是指高能級的電子在沒有外界作用下自發(fā)地遷移至低能級,并在躍遷時產(chǎn)生光(電磁波)輻射,輻射光子能量為hυ=E2-E1,即兩個能級之間的能量差。
這種輻射的特點是每一個電子的躍遷是自發(fā)的、獨立進行的,其過程全無外界的影響,彼此之間也沒有關系。因此它們發(fā)出的光子的狀態(tài)是各不相同的。這樣的光相干性差,方向散亂。
?
受激吸收和受激輻射之間的關系
那么到底原子吸收外來的光子后,是表現(xiàn)為受激吸收呢還是受激輻射呢
?
在一個原子體系中,總有些原子處于高能級,有些處于低能級。而自發(fā)輻射產(chǎn)生的光子既可以去刺激高能級的原子使它產(chǎn)生受激輻射,也可能被低能級的原子吸收而造成受激吸收。因此,在光和原子體系的相互作用中,自發(fā)輻射、受激輻射和受激吸收總是同時存在的。如果想獲得越來越強的光,也就是說產(chǎn)生越來越多的光子,就必須要使受激輻射產(chǎn)生的光子多于受激吸收所吸收的光子。怎樣才能做到這一點呢?我們知道,光子對于高低能級的光子是一視同仁的。在光子作用下,高能級原子產(chǎn)生受激輻射的機會和低能級的原子產(chǎn)生受激吸收的機會是相同的。這樣,是否能得到光的放大就取決于高、低能級的原子數(shù)量之比。若位于高能態(tài)的原子遠遠多于位于低能態(tài)的原子,我們就得到被高度放大的光。但是,在通常熱平衡的原子體系中,原子數(shù)目按能級的分布服從玻爾茲曼分布規(guī)律。因此,位于高能級的原子數(shù)總是少于低能級的原子數(shù)。在這種情況下,為了得到光的放大,必須到非熱平衡的體系中去尋找。
粒子數(shù)反轉(zhuǎn)
一個誘發(fā)光子不僅能引起受激輻射,而且它也能引起受激吸收,所以只有當處在高能級的原子數(shù)目比處在低能級的還多時,受激輻射才能超過受激吸收,而占優(yōu)勢。由此可見,為使光源發(fā)射激光,而不是發(fā)出普通光的關鍵是發(fā)光原子處在高能級的數(shù)目比低能級上的多,這種情況,稱為粒子數(shù)反轉(zhuǎn)。但在熱平衡條件下,原子幾乎都處于最低能級(基態(tài))。因此,如何從技術上實現(xiàn)粒子數(shù)反轉(zhuǎn)則是產(chǎn)生激光的必要條件。那么如何才能達到粒子數(shù)反轉(zhuǎn)狀態(tài)呢?這需要利用激活媒質(zhì)。所謂激活媒質(zhì)(也稱為放大媒質(zhì)或放大介質(zhì)),就是可以使某兩個能級間呈現(xiàn)粒子數(shù)反轉(zhuǎn)的物質(zhì)。它可以是氣體,也可以是固體或液體。用二能級的系統(tǒng)來做激活媒質(zhì)實現(xiàn)粒子數(shù)反轉(zhuǎn)是不可能的。要想獲得粒子數(shù)反轉(zhuǎn),必須使用多能級系統(tǒng)。
?
波爾茲曼分布規(guī)律
在通常熱平衡條件下,處于高能級E2上的原子數(shù)密度N2,遠比處于低能級的原子數(shù)密度低,這是因為處于能級E的原子數(shù)密度N的大小時隨能級E的增加而指數(shù)減小,即N∝exp(-E/kT),這就是著名的波耳茲曼分布規(guī)律。于是在上、下兩個能級上的原子數(shù)密度比為
N2/N1∝exp{-(E2-E1)/kT}
式中k為波耳茲曼常量,T為絕對溫度。因為E2>E1,所以N2《N1。
例如,已知氫原子基態(tài)能量為E1=-13.6eV,第一激發(fā)態(tài)能量為E2=-3.4eV,在20℃時,kT≈0.025eV,則
N2/N1∝exp(-400)≈0
可見,在20℃時,全部氫原子幾乎都處于基態(tài),要使原子發(fā)光,必須外界提供能量使原子到達激發(fā)態(tài),所以普通廣義的發(fā)光是包含了受激吸收和自發(fā)輻射兩個過程。一般說來,這種光源所輻射光的能量是不強的,加上向四面八方發(fā)射,更使能量分散了。
?
激光產(chǎn)生的過程
以紅寶石激光器為例,原子首先吸收外部注入的能量,躍遷至受激態(tài)(E3)。原子處于受激態(tài)的時間非常短,大約為10-7秒后,它便會落到一個稱為亞穩(wěn)態(tài)(E2)的中間狀態(tài)。原子在亞穩(wěn)態(tài)的時間很長,大約是10-3秒或更長的時間。原子長時間停留在亞穩(wěn)態(tài),導致在亞穩(wěn)態(tài)的原子數(shù)目多于在基態(tài)的原子數(shù)目,此時的狀態(tài)稱就是粒子數(shù)反轉(zhuǎn)。其產(chǎn)生的結(jié)果就導致使通過受激輻射由亞穩(wěn)回到基態(tài)(E1)的原子,比通過受激吸收由基態(tài)躍遷至亞穩(wěn)態(tài)的原子為多,從而保證介質(zhì)內(nèi)的光子可以增多,從而形成激光。這就是典型的激光三能級系統(tǒng)。
?
?
當粒子受外界能量激勵從E1到E3,由于E3能級壽命短,很快轉(zhuǎn)移到E2上,因能級E2為亞穩(wěn)態(tài),在E2、E1間實現(xiàn)粒子數(shù)反轉(zhuǎn)分布。由于下能級E1為基態(tài),通??偸欠e聚著大量的粒子,因此要實現(xiàn)粒子數(shù)反轉(zhuǎn),必須將半數(shù)以上的基態(tài)粒子激發(fā)到E2上,所以,外界激勵就需要有相當強的能力。
而我們所用的YAG激光系統(tǒng)屬于四能級系統(tǒng)。如所示,能級E1為基態(tài),E2、E3、E4為激發(fā)態(tài)。在外界激勵的條件下,基態(tài)E1上的粒子大量被激發(fā)到E4上,又迅速轉(zhuǎn)移到E3上,E3能級為亞穩(wěn)態(tài),壽命較長。而E2能級壽命很短,E2上的粒子又很快躍遷到基態(tài)E1,所以,四能級系統(tǒng)中,粒子數(shù)反轉(zhuǎn)是在E3與E2間實現(xiàn)。也就是說,能實現(xiàn)粒子數(shù)反轉(zhuǎn)的激光下能級是E2,不像三能級系統(tǒng)那樣,為基態(tài)E1。因為E2不是基態(tài),所以在室溫下,E2能級上的粒子數(shù)非常少。因而粒子數(shù)反轉(zhuǎn)在四能級系統(tǒng)比三能級系統(tǒng)容易實現(xiàn)。常見激光器中,除摻釹釔鋁石榴石(簡Nd3+:YAG)激光器外,氦氖激光器和二氧化碳激光器也都屬四能級系統(tǒng)激光器。需要指明,以上討論的三能級系統(tǒng)和四能級系統(tǒng)都是對激光器運轉(zhuǎn)過程中直接有關的能級而言,不是說某種物質(zhì)只具有三個能級或四個能級。
?